

Meet your speakers

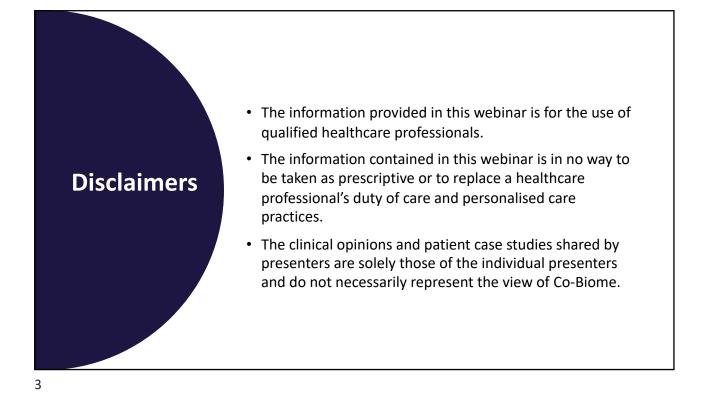
Dr Brad Leech Nutritionist and Lead Clinical Educator

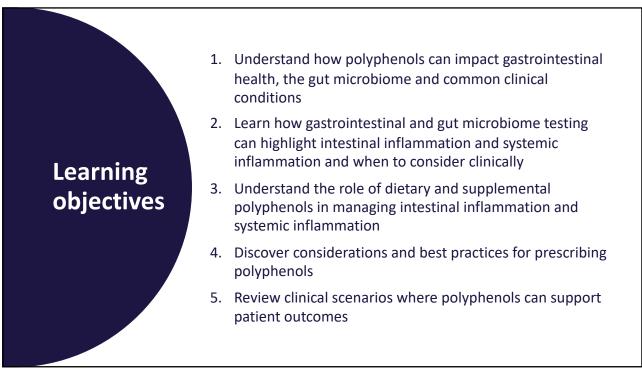
All participants have been muted

Q

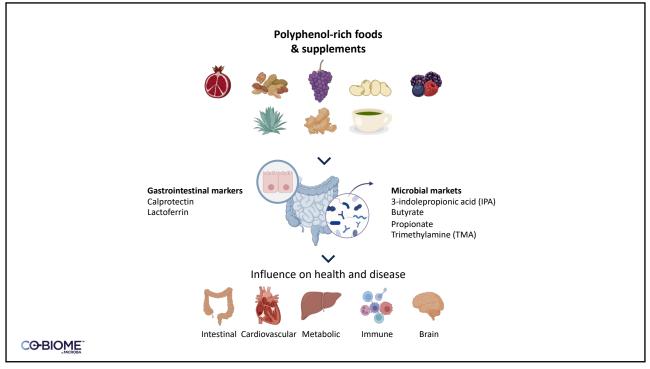
There is an optional 15 minutes

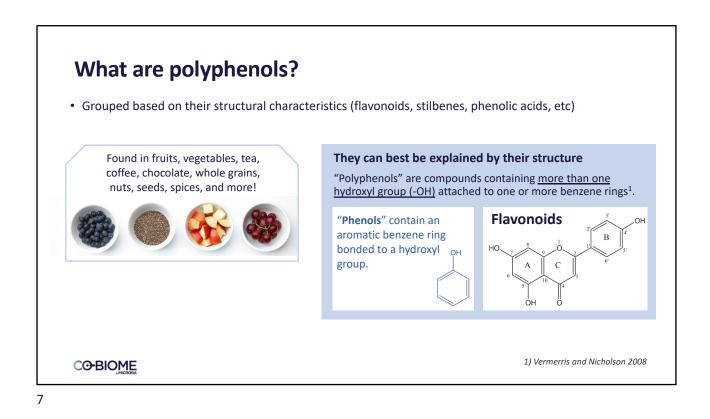
for questions at the end

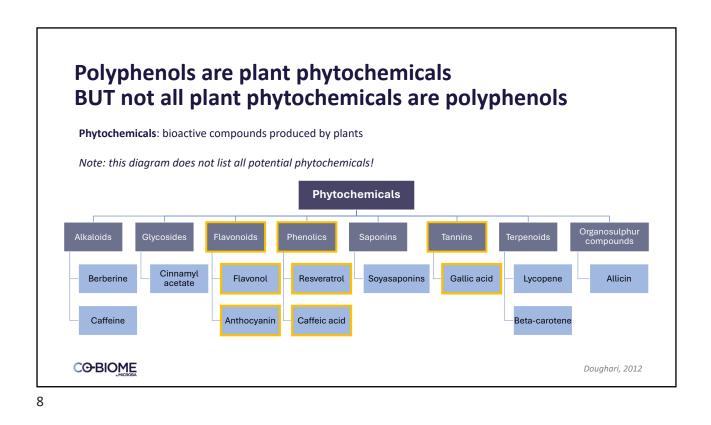

Hayley Parcell Nutritionist and Head of Co-Biome™ Healthcare

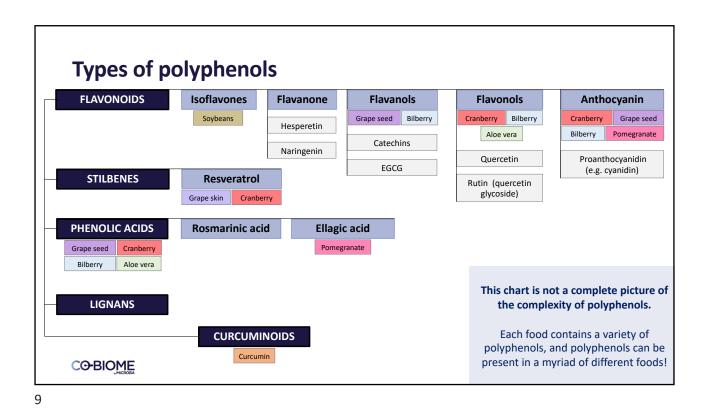


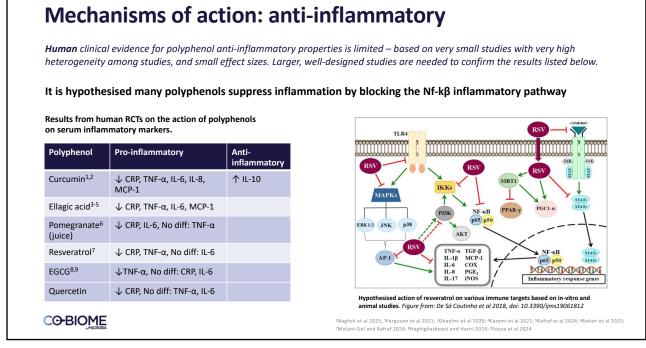
Add your questions in the chat to have them answered live

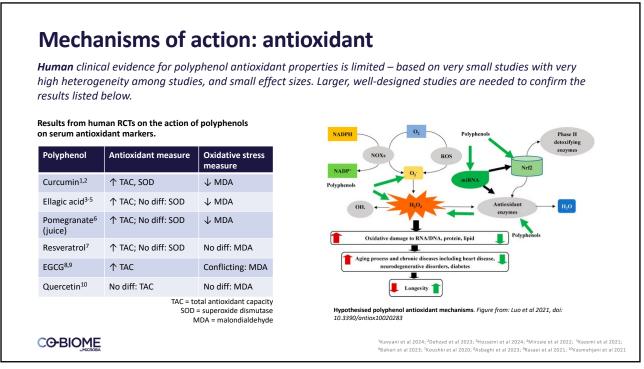

2

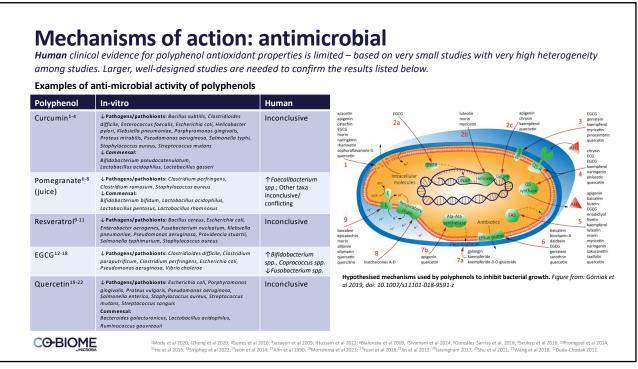

CO-BIOME

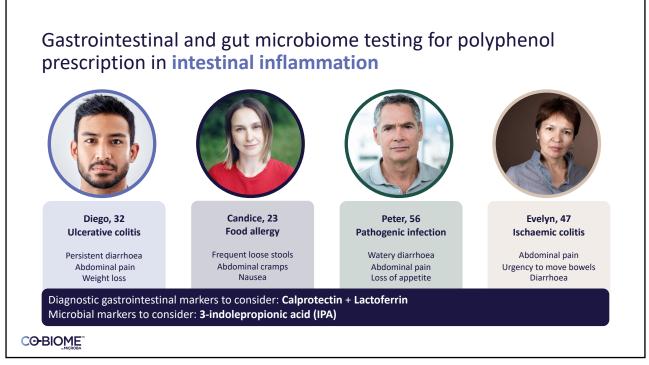


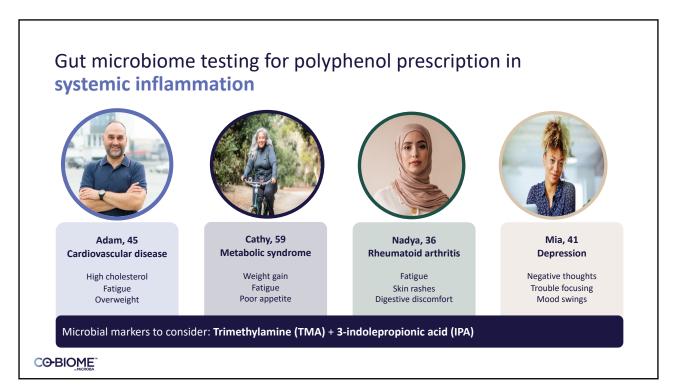


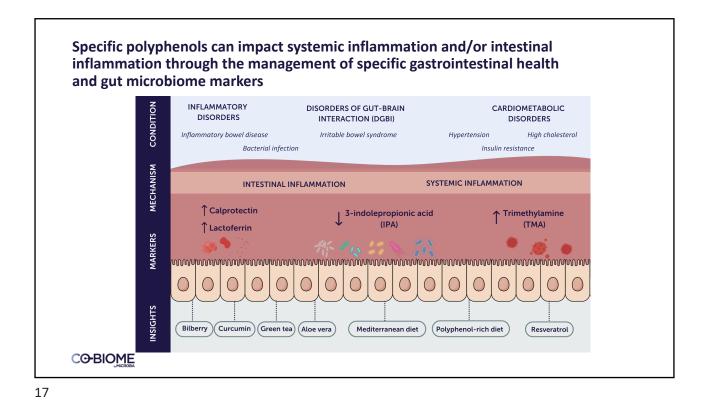


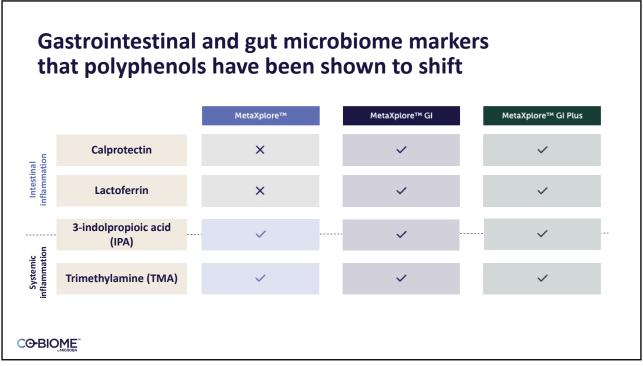


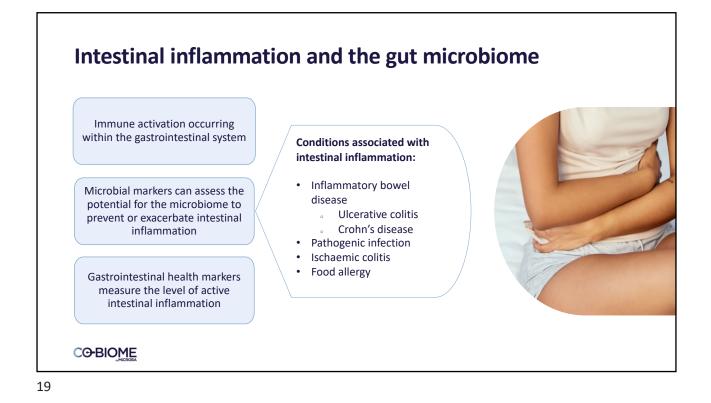


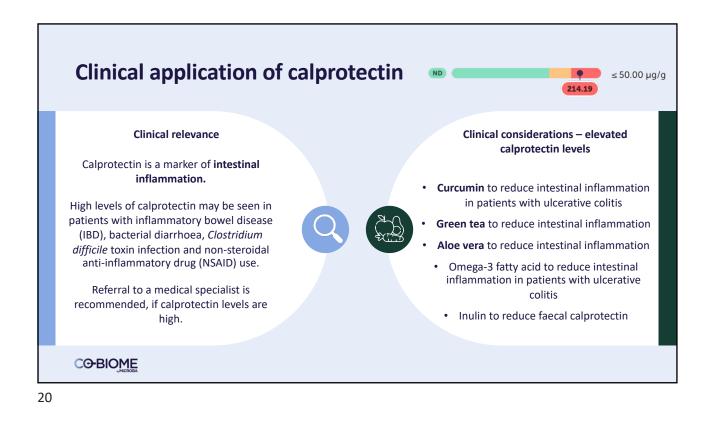

Richest sources of polyphenols Flavonoids Stilbenes · Isoflavones: soybeans Resveratrol: small amount in grapes. Generally low quantities in foods. • Flavones: parsley and celery Flavanones: Phenolic acids Naringenin: grapefruit Hesperetin: oranges Ellagic acid: Kakadu plum, walnuts, raspberries • Eriodictyol: lemons Flavanols: Lignans • Primary polyphenol in apples · Catechins: primarily green tea and cocoa. Also, Flaxseeds apricots and cherries. Flavonols: onions, curly kale, leeks, broccoli, and blueberries Anthocyanin: black elderberries, blackberries Gharras, 2009; Rothwell, 2013 **CO-BIOME**

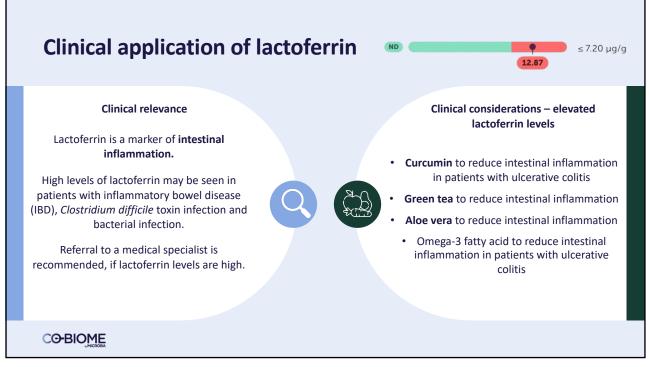


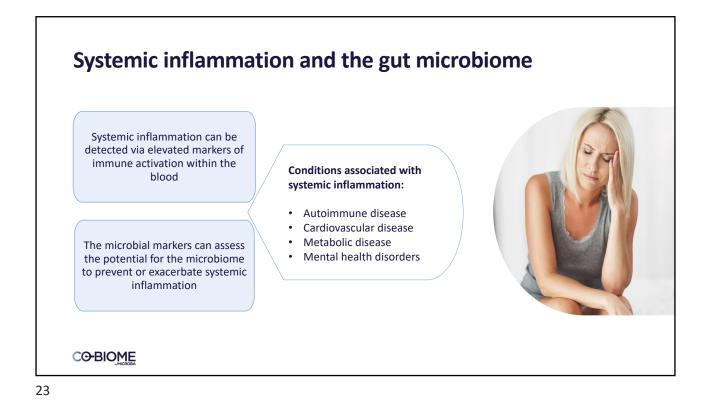


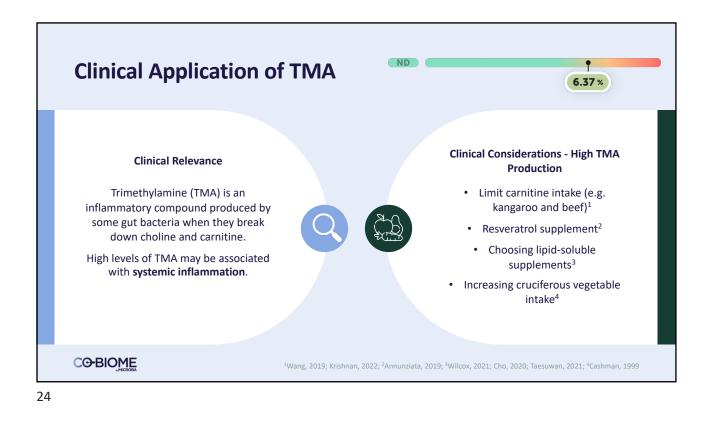


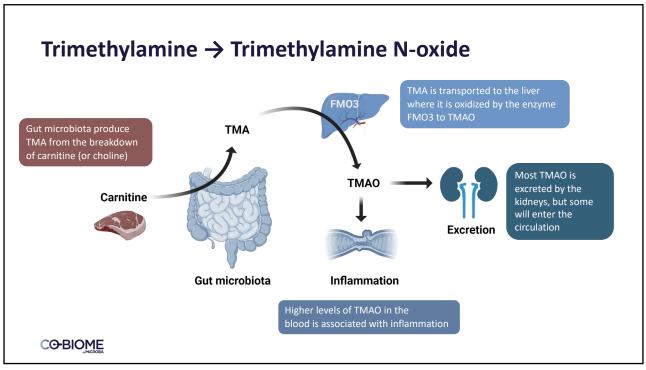


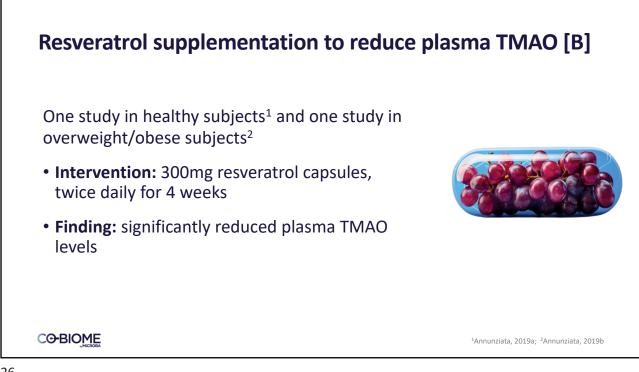


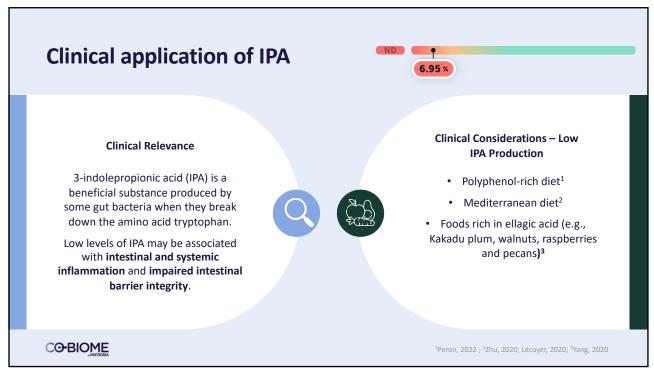


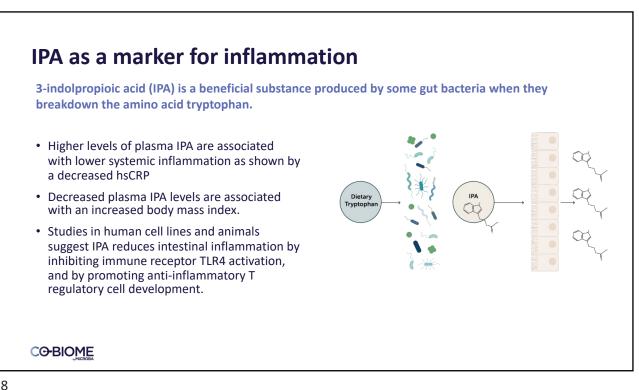






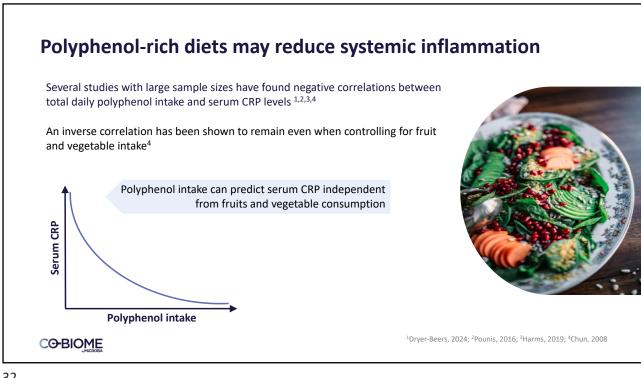

Polyphenols as an adjunct treatment in the management of intestinal inflammation


Bilberry	Curcumin	EGCG	Aloe vera
Biedermann, 2013: 160g/day bilberry preparation corresponding to 95g dry weight (600g fresh fruit, equivalent to 840mg/day anthocyanins) for 6 weeks.	 Banerjee, 2021: 50mg bioenhanced curcumin twice daily for 6 weeks. Lang, 2015: 1.5g twice daily of capsules containing 95% pure curcumin for 1 month. Hanai, 2006: 1g curcumin twice daily for 6 months. 	 Zeng, 2022: 1g/day green tea extract for 28 days. Dryden, 2013: 400mg or 800mg Polyphenon E per day in split doses of 200mg for 56 days. Consideration: Polyphenon E has highest incidence of adverse effects. 	Langmead, 2004: 100 mL aloe vera gel, twice per day for 4 weeks.

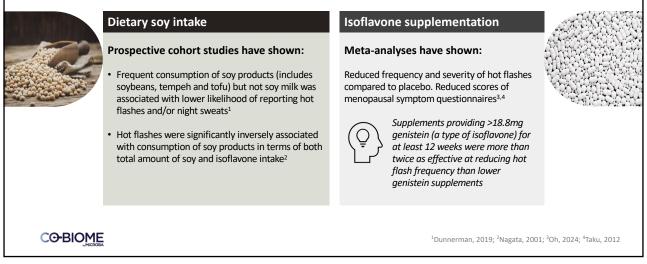


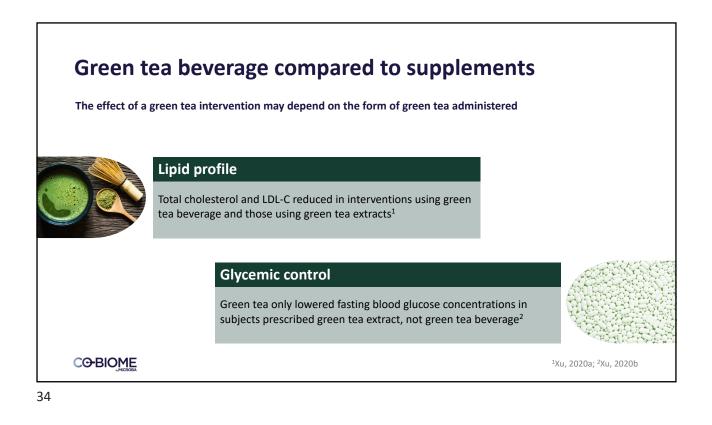
8-week intervention with diet consisting of 3 serves per day of polyphenol-rich foods (average of 724 mg/day polyphenols) significantly increased plasma IPA levels¹

- 10g dark chocolate
- 2g cocoa powder
- 150g apple
- 100g apple purée
- 120g berry purée
- 120g blueberry
- 200ml green tea
- 200ml blood orange juice
- 125ml pomegranate juice


CO-BIOME

29



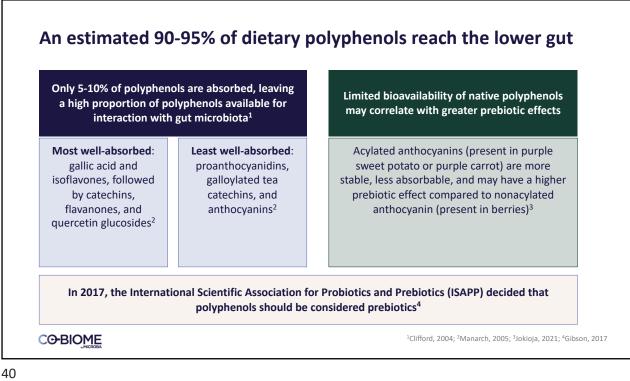

¹Peron, 2022

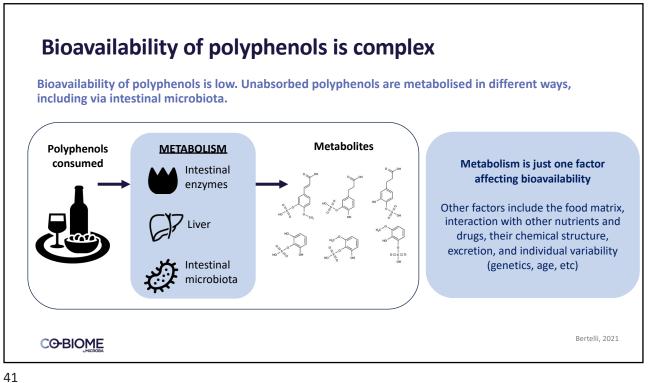
Menopausal symptoms reduce with isoflavones from both diet and supplements

Pomegranate juice compared to supplements

Fresh juice has a greater effect than extracts at reducing systemic inflammation and blood pressure. The opposite is true for improving lipid profile.

Measure	Pomegranate form	Impact
Systemic Fresh juice		May reduce serum IL-6 at \leq 200mL/day and serum CRP at $>$ 200mL/day
	Extract	May reduce serum CRP No effect on IL-6
Lipid profile	Fresh juice	May increase serum HDL-C No effect on TC, LDL-C or TG
Extract		May reduce serum TG at any dose. May reduce serum LDL-C at < 1000mg/d. May reduce serum TC and increase HDL-C at \geq 1000mg/d
Blood pressure Fresh juice		May reduce systolic blood pressure at any dose, but especially at \leq 200mL/day May reduce diastolic blood pressure but more research needed to confirm dose
	Extract	May reduce systolic blood pressure at ≥ 1000mg/day No effect on diastolic blood pressure
		Bahari, 2023a; Bahari, 2023b; Bahari, 2024

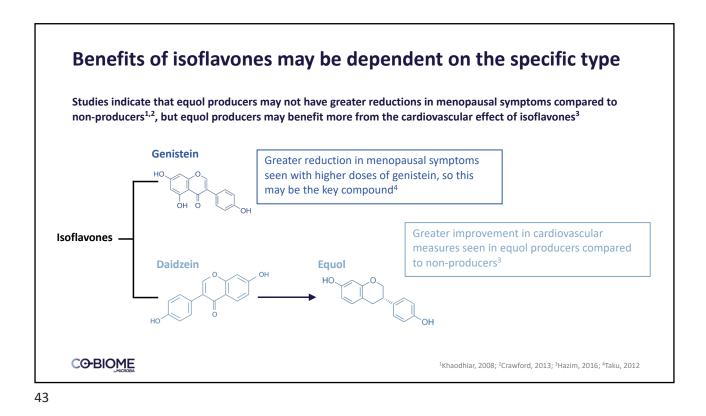

Polyphenol	Health effect	Dosage	Duration	Reference
Resveratrol	May reduce CRP and TNF-a	Not dose-dependent	Not duration- dependent	Molani-Gol and Rafraf 2024
Max dose: 150 - 450mg/day	May reduce blood pressure	300mg/day; 600-1000 mg/day	At least 3 months; 2-3 months	Batista-Jorge, 2024
EFSA, 2016; Edwards, 2011	May reduce LDL-C	≥ 500mg/day	≥ 12 weeks	Cao, 2022
	May reduce total cholesterol	Not dose-dependent	Not duration- dependent	Cao, 2022
	May reduce plasma TMA/TMAO	2 x 300mg	28 days to 8 weeks	Annunziata, 2019a; Annunziata, 2019b
Ellagic acid	May reduce LDL-C	≥ 180mg/day	Not duration- dependent	Wang, 2024
Max dose:	May reduce total triglycerides	≥ 180mg/day	≥8 weeks	Wang, 2024
2 x 500mg/day (limited number of studies, 2 x	May reduce fasting blood glucose	≥ 180mg/day	≥8 weeks	Wang, 2024
500mg/day has been used safely for	May reduce insulin	Not dose-dependent	≥8 weeks	Wang, 2024
12 weeks with no adverse effects) Hidalgo-Lozada, 2022	May reduce HOMA-IR	Not dose-dependent	Not duration- dependent	Wang, 2024
	May reduce CRP	180mg/day; 200mg/day; 2 x 450mg/day	60 days; 8 weeks; 8 weeks	Ghadimi, 2020; Kazemi, 2021; Rafraf, 2024
	May reduce TNF-a	180mg/day; 200mg/day	60 days; 8 weeks	Ghadimi, 2020; Kazemi, 2021


Polyphenol	Health effect	Dosage	Duration	Reference
Curcumin No established safe dose	Reduces CRP	≤ 700mg/day; Not dose-dependent (most studies ~500mg)	> 7 weeks; Greatest effect seen at ~13 weeks	Naghsh, 2023; Ferguson, 2021
based on 2023 TGA report on potential hepatic effects)	Reduces IL-6	Not dose-dependent	Not duration-dependent	Naghsh, 2023; Ferguson, 2021
	May reduce intestinal inflammation	2 x 50mg/day (bio-enhanced); 2 x 1.5g/day; 1g/day	6 weeks; 1 month; 6 months	Banerjee, 2021; Lang, 2015; Hanai, 2006
	May reduce self-reported gastrointestinal complaints	500mg/day	4 weeks	Lopresti, 2021
Aloe vera	May reduce IBS symptoms (primarily in IBS-D patients)	500mg/day (freeze-dried gel)	4 weeks	Hong, 2018; Ahluwalia, 2021
derivatives are present whole leaf extract or aloe atex) as evidence of genotoxicity.	May reduce intestinal inflammation	2 x 100mL/day (aloe gel)	4 weeks	Langmead, 2004
EFSA, 2018				

Polyphenol	Health effect	Dosage	Duration	Reference
EGCG	May reduce TC and LDL-C	~200mg/day EGCG	3 months	Bogdanski, 2012; Maron 2003; Nantz, 2009
Max dose: 300mg/day	May reduce fasting blood glucose	May require > 300mg/day	> 12 weeks	Xu, 2020b; Zamani, 2023
(risk of hepatic and gastrointestinal adverse effects if exceeded) <i>Hu, 2018; Dekant, 2017</i>	May reduce intestinal inflammation	May require > 300mg/day. Need more studies to confirm if necessary.	28 weeks; 56 weeks	Zeng, 2022; Dryden, 2013
Isoflavones Max dose: No adverse effects at	Isoflavone supplementation may improve symptoms of menopause (<u>frequency</u> of hot flashes)	30 to 80mg/day Supplements providing >18.8mg genistein for at least 12 weeks were more than twice as effective	6 weeks to 12 months	Oh, 2024; Taku, 2012
300mg/day for 2 years or 120mg/day for 3 years	Isoflavone supplementation may improve symptoms of menopause (<u>severity</u> of hot flashes)	30 to 135mg/day	12 weeks to 12 months	Oh, 2024; Taku, 2012
Alekel, 2010; Messina, 2022	Dietary soy intake may improve symptoms of menopause	115.9g/day soy intake; 86g cooked soybeans	N/A; 12 weeks	Nagata, 2001; Barnard, 2021; Dunnerman, 2019

Clinical considerations for polyphenol prescription

Intake	 What is the patient's current intake of polyphenols through diet and supplements?
Absorption & bioavailability	 Which individual patient factors could influence absorption and bioavailability?
Gut microbiome	\circ Does your patient's unique microbiome aid polyphenol efficacy?
Nutrient & drug interaction	 Is your patient's diet, supplements or medication interfering with polyphenol absorption and vice versa?
Safety	 Is your patient at risk of an adverse event from polyphenol supplement intake?



Polyphenol efficacy (sometimes) depends on the gut microbiome

The breakdown of different polyphenols depends on **specific bacterial strains**. Although polyphenols provide direct health benefits, the complete advantages <u>may</u> be diminished without bacterial conversion to beneficial metabolites.

Polyphenol	Major end-products produced	Human gut bacteria (identified to date) capable of polyphenol conversion
lsoflavones (Daidzein)	Equol: may have anti-cancer properties (in- vitro, animal), may reduce menopausal symptoms (human)	Conversion of daidzein to equol: Adlercreutzia equolifaciens, CAG-1427 sp000435475, Enteroscipio sp000270285, Hugonella massiliensis [RUG013 sp00148644], Senegalimassilia faecais [Senegalimassilia MIC8876], Slackia equolifaciens*, Slackia_A isaflavonicanvertens [Slackia_A MIC8451]
	Conversion of daidzein to daidzein-intermediates: Bifidobacterium adolescentis, Bifidobacterium animalis, Bifidobacterium longum, Bittarella massiliensis, Collinsela aerofaciens, Collinsella massiliensis, Collinsella stercoris, Eggerthella lenta, Enterococcus lactis, Escherichia coli, Gordonibacter urolithinfaciens, Slackia exigua	
Ellagic acid	function and may be anti-inflammatory (in- vitro, animal) Urolithin-B : may be associated with disease	Conversion of ellagic acid to Uro-intermediates: Ellagibacter isourolithinifaciens [Eggerthellaceae MIC8667], Gordonibacter pamelaeae, Gordonibacter urolithinfaciens
		Conversion of ellagic acid to Uro-A: Bifidobacterium pseudocatenulatum INIA P815, Enterococcus_B faecium FUA027, Lactococcus garvieae FUA009, Streptococcus thermophilus FUA329
	and dysbiosis (observational human)	Conversion of Uro-intermediates to Uro-A and Uro-B: Enterocloster [Clostridioides] bolteae, Enterocloster [Clostridioides] asparagiformis, Enterocloster [Clostridioides] citroniae
Quercetin	DOPAC (3,4-Dihydroxyphenylacetic acid): may have antioxidant properties (in-vitro, animal)	Bacteroides eggerthii, Eubacterium_I ramulus, Flavonifractor plautii, Lachnospira eligens_B
Resveratrol	Dihydroresveratrol: may have weak anti- cancer properties (in vitro, animal)	Adlercreutzia equalifaciens, Adlercreutzia rubneri [Adlercreutzia MIC8014], Bacteroides uniformis, Eggerthella lenta, Slack equalifaciens*
	Lunularin: may have anti-cancer properties (in-vitro, animal)	No species identified yet

Polyphenols interact with drugs

The intake of polyphenols can affect how our bodies absorb certain drugs

High inter-individual variability

This may be due to differences in expression or activity levels of drug-metabolising enzymes or genetic polymorphisms in genes encoding these enzymes.

Modulating cytochrome P450 (CYP) enzymes

CYP enzymes are responsible for the metabolism of most drugs.

Resveratrol has been shown to inhibit CYP2C9. This enzyme contributes to the metabolism of warfarin. Inadequate metabolism leads to increased plasma levels of the drug, enhancing its anticoagulant effect.

CO-BIOME

45

CYP3A4: metabolises vast majority of drugs, including immunosuppressive drugs for transplant patients, HIV protease inhibitors, statin drugs, and chemotherapeutics.

CYP2D6: metabolises many antidepressants, antipsychotics, and beta-blockers. Responsible for converting tamoxifen to the potent anti-estrogen, endoxifen.

CYP2C9: metabolises NSAIDs, COX-2 inhibitors, oral anticoagulants and oral hypoglycemics. Altering influx (e.g. OATPs) or efflux (e.g. P-glycoprotein and BCRP) transporters

Expressed in protective barriers (e.g. intestine, kidneys and liver). Efflux transporters mediate drug excretion from cells whereas influx transporters mediate drug uptake into cells.

Ellagic acid inhibited P-glycoprotein (removes drug from enterocytes back into gut lumen) activity, increasing bioavailability of diltiazem.

Green tea inhibited OATP1A2 (removes drug from gut lumen into enterocytes) activity, decreasing bioavailability of rosuvastatin.

Quercetin inhibited OATP1B1 (removes drug from bloodstream into liver cells) activity, increasing exposure to pravastatin.

Drug-polyphenol interactions

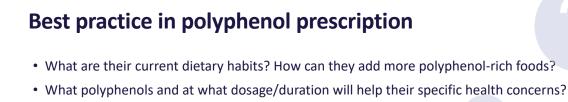
This is not an exhaustive list of potential drug-polyphenol interactions *Preclinical evidence in animals: clinical experiments are needed to assess these drugs when concomitantly administered with this polyphenol

Polyphenol	Drug	Exposure	Proposed mechanism	Reference
Curcumin	Sulfasalazine	Increased	Inhibited BCRP	Kusuhara, 2012
	Talinolol	Decreased	Induced P-gp	Juan, 2013
	Caffeine, theophylline, clozapine, and acetaminophen (not yet assessed)	Increased	Inhibited CYP1A2	Chen, 2010
	Caffeine, nicotoine and cotinine (not yet assessed)	Decreased	Induced CYP2A6	Chen, 2010
Resveratrol	Warfarin	Increased	Inhibited BCRP* and CYP2C9	Huang, 2020
	Losartan	Increased	Inhibited CYP2C9	Chow, 2010
	Buspirone	Increased	Inhibited CYP3A4	Chow, 2010
	Dextromethorphan	Increased	Inhibited CYP2D6	Chow, 2010
	Caffeine	Decreased	Induced CYP1A2	Chow, 2010
Isoflavones	Theophylline	Increased	Inhibited CYP1A2	Soyata, 2021
	Midazolam	Decreased	Induced CYP3A4	Soyata, 2021
	Celecoxib*	Increased	Inhibited CYP2C9	Soyata, 2021
	Paclitaxel*	Increased	Inhibited CYP3A4 and P-gp	Soyata, 2021
	Repaglinide* and omeprazole*	Increased	Inhibited P-gp	Soyata, 2021
	Imatinib* and carbamazepine*	Decreased	Induced CYP3A4	Soyata, 2021

CO-BIOME

Drug-polyphenol interactions (cont.)

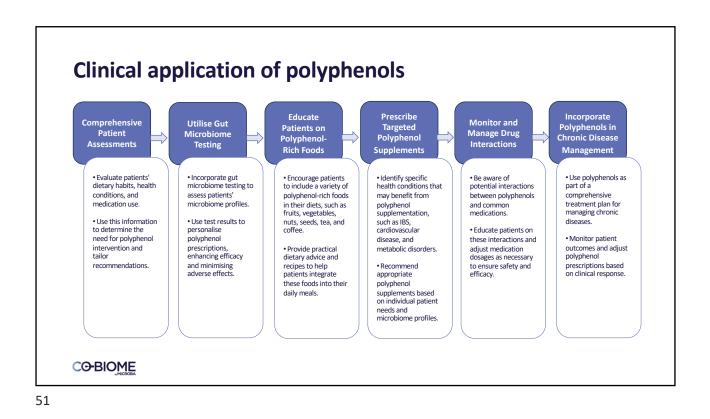
This is not an exhaustive list of potential drug-polyphenol interactions *Preclinical evidence in animals: clinical experiments are needed to assess these drugs when concomitantly administered with this polyphenol

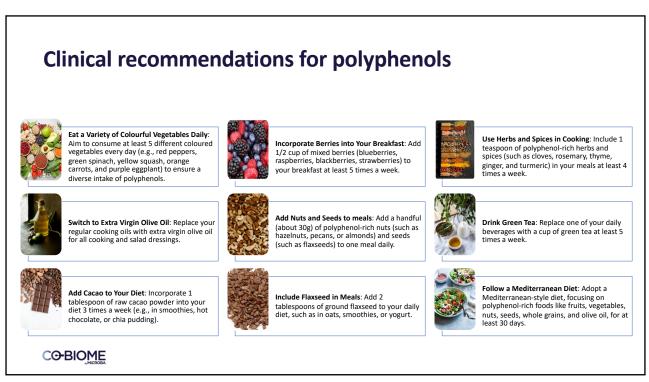

Polyphenol	Drug	Exposure	Proposed mechanism	Reference
Ellagic acid	Metoprolol*	Increased	Inhibited CYP2D6	Athukuri, 2016
	Diltiazem*	Increased	Inhibited CYP3 and P-gp	Athukuri, 2017
Green tea	Simvastatin and tacrolimus	Increased	Inhibited CYP3A4 and P-gp	Werba, 2018
	Sildenafil	Increased	Inhibited CYP3A4	Werba, 2018
	Buspirone	Increased	Inhibited CYP3A4	Albassam, 2017
	Rosuvastatin and nadolol	Decreased	Inhibited OATP1A2 or OATP2B1	Werba, 2018
	Digoxin	Decreased	Induced P-gp	Kim, 2018
Quercetin	Cyclosporine	Increased	Inhibited CYP3A4	Choi, 2004
	Pravastatin	Increased	Inhibited OATP1B1	Wu, 2012
	Fexofenadine	Increased	Inhibited P-gp	Kim, 2009
	Talinolol	Decreased	Induced P-gp	Wang, 2013
	Midazolam	Decreased	Induced CYP3A	Duan, 2012
	Paracetamol*	Increased	Inhibited P-gp	Pingli, 2015

CO-BIOME

47

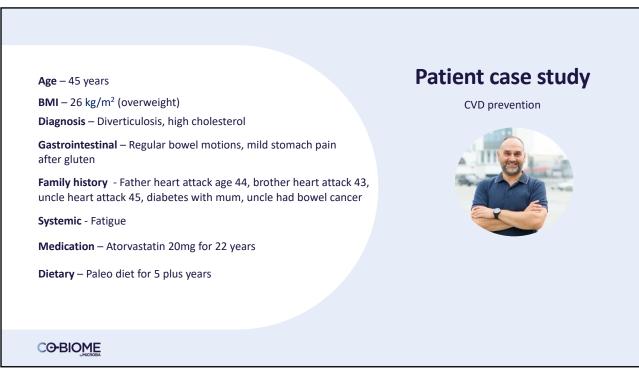
Polyphenol safety considerations


Polyphenol	Max dose	Adverse events	References
Resveratrol	150 - 450mg/day	Generally well-tolerated but GI symptoms, especially diarrhoea, are common (mild up to 1.5g/day, most common when of at least 2.5g/day). EFSA Panel suggests 150mg/day. resVida® is a trans-resveratrol supplement with GRAS status at 450mg/day. Caution when taking with warfarin as may increase anticoagulant effects.	EFSA, 2016; Edwards, 2011
Ellagic acid	2 x 500mg/day	Limited number of studies. 2 ${\rm x}$ 500mg/day has been used safely for 12 weeks with no adverse effects	Hidalgo- Lozada, 2022
Curcumin	No established safe dose	2023 TGA report on potential hepatic effects determined there is no established safe dose. There are new TGA label requirements for curcumin products. Liver injury is idiosyncratic; therefore, dose cannot predict it.	TGA, 2023
Aloe vera	No established safe dose.	Avoid if hydroxyanthracene derivatives are present (whole leaf extract or aloe latex) as evidence of genotoxicity.	Younes, 2018
EGCG	300mg/day	Mild-moderate GI symptoms observed in 400 to 4000mg/day. Liver injury can occur when consumed in supplement form but does not appear to occur from green tea beverage consumption. Highest incidence from Polyphenon E supplement.	Hu, 2018; Dekant, 2017
Isoflavones	No adverse effects at 300mg/day for 2 years or 120mg/day for 3 years	In 2015, the European Food Safety Authority declared soy isoflavones do not adversely affect the breast, thyroid, or uterus of postmenopausal women and is in support of their safety. However, more research is required on utero isoflavone exposure and the effects of isoflavone on thyroid in cases of iodine deficiency.	Alekel, 2010; Messina, 2022
	-	And don't forget about other drug	; interactions

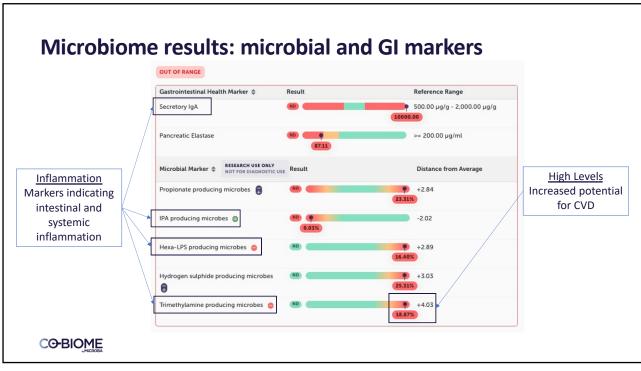


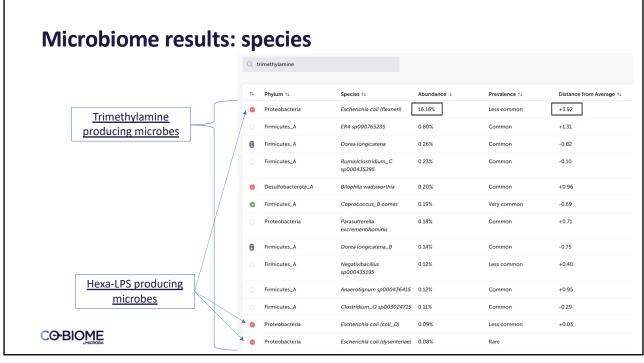
- If the polyphenol should be consumed with food, what type of nutrients should/should not be present in the food to maximise benefits?
- Are their current dietary polyphenol habits affecting the absorption of other nutrients, or vice versa (e.g. multiple cups of tea per day + iron deficiency)?
- Will a prescribed polyphenol enhance or inhibit their exposure to relevant drugs?
- How is their gut microbiome affecting the metabolism of polyphenols?
- Will any existing health conditions affect polyphenol metabolism (e.g. liver disease)?
- Do they have increased risk factors that may lead to side effects from polyphenols?

CO-BIOME

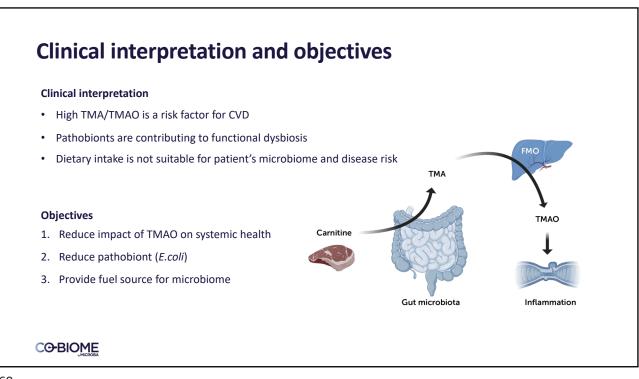


Available databases to assess polyphenol intake USDA flavonoid database 3.3 (last updated in 2018): https://doi.org/10.15482/USDA.ADC/1178142 Composition of 506 foods 26 predominant dietary flavonoids • Separate databases for isoflavone and proanthocyanidin contents eBASIS (Bioactive Substances in Food Information Systems, last updated in 2017): https://doi.org/10.3390/nu9040320 • Composition of 267 foods 794 bioactive compounds (not exclusive to polyphenols) and includes health effects from intervention studies • 1,147 peer-reviewed publications Phenol-Explorer 3.0 (last updated in 2013): https://doi.org/10.1093/database/bat070 • Composition of >100 foods • 161 polyphenols or groups of polyphenols • 129 peer-reviewed publications CO-BIOME


MEDAS score


Questions	Criteria for 1 point	Score
1. Do you use olive oil as main culinary fat?	Yes	1
2. How much olive oil do you consume in a given day (including oil used for frying, salads, out-of-house meals, etc.)?	≥4 tbsp	0
3. How many vegetable servings do you consume per day? (1 serving : 200 g [consider side dishes as half a serving])	\geq 2 (\geq 1 portion raw or as a salad)	0
4. How many fruit units (including natural fruit juices) do you consume per day?	≥3	0
5. How many servings of red meat, hamburger, or meat products (ham, sausage, etc.) do you consume per day? (1 serving: 100-150 g)	<1	0
6. How many servings of butter, margarine, or cream do you consume per day? (1 serving: 12 g)	<1	0
7. How many sweet or carbonated beverages do you drink per day?	<1	0
8. How much wine do you drink per week?	≥7 glasses	0
9. How many servings of legumes do you consume per week? (1 serving : 150 g)	≥3	0
10. How many servings of fish or shellfish do you consume per week? (1 serving 100–150 g of fish or 4–5 units or 200 g of shellfish)	≥3	1
11. How many times per week do you consume commercial sweets or pastries (not homemade), such as cakes, cookies, biscuits, or custard?	<3	1
12. How many servings of nuts (including peanuts) do you consume per week? (1 serving 30 g)	≥3	0
13. Do you preferentially consume chicken, turkey, or rabbit meat instead of veal, pork, hamburger, or sausage?	Yes	1
14. How many times per week do you consume vegetables, pasta, rice, or other dishes seasoned with sofrito (sauce made with tomato and onion, leek, or garlic and simmered with olive oil)?	≥2	0
doi:10.1371/journal.pone.0043134.t001 High Adh	erence (9-14 points)	
	Adherence (6-8 points	s)

55

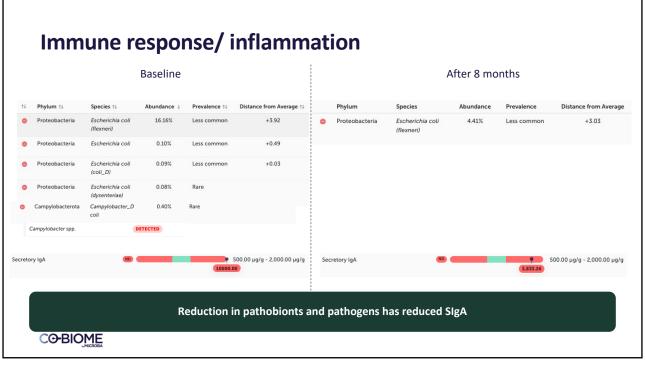

CVD pathology

Calcium score:	ŀ	CONCLUSION: 1. The total coronau 2. The 10-year risk	ry artery calcium score is 134.6. of major adverse cardiovascular ev	rents is moderate.
0	ł	Explanatory notes:	+	++
19.8	+	CT Calcium score:	10-year risk of major adverse cardiovascular events:	Interpretation:
35.4		0	<1%	Very low risk.
79.5	1	1-100	<10%	Low risk.
+	+	101-400 +	10-20%	Moderate risk.
34.6	+	>400 +	>20% +	High risk.
6.0 H 0.8 1.11 4.6 H 5.4 H 4.89 H	(<2. (>0. (<4. (<4.	1) mmol/L 89) mmol/L 1) mmol/L 6)		
	score: 0 19.8 35.4 79.5 - 34.6 	i score: 0 19.8 35.4 	1. The total coronal Calcium score: . The 10-year risk 2. The 10-year risk . CT Calcium score: . 1. The total coronal . 2. The 10-year risk . 101-100 . 101-400 . 101-400 . 101-400 . 4.6 . 2. The 10-year risk . 101-400 . 101-400 . 101-400 . 101-400 . 101-400	1. The total coronary artery calcium score is 134.6. Calcium score: 0

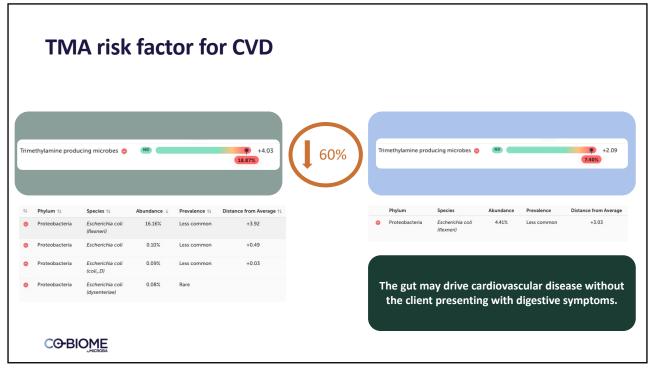
Bacterial		
Marker †↓	Result ↑↓	
Aeromonas spp.	NOT DETECTED	Campylobacter spp.
Campylobacter spp.	DETECTED	Campylobacter jejuni and coli are foodbourne
Clostridium difficile toxin B	NOT DETECTED	pathogens that can cause gastroenteritis. Most cas
E. coli O157	NOT DETECTED	are self-limiting. Medical treatment is likely only
Enteroaggregative E. coli (EAEC)	NOT DETECTED	required for immunocompromised patients and
Enteropathogenic E. coli (EPEC)	NOT DETECTED	
Enterotoxigenic E. coli (ETEC)	NOT DETECTED	those with severe or persistent symptoms; however
Hypervirulent Clostridium difficile	NOT DETECTED	consideration of the patient's clinical presentation
Salmonella spp.	NOT DETECTED	recommended. If faecal occult blood is also positiv
Shiga Toxin	NOT DETECTED	or haemorrhagic colitis is suspected, urgent furthe
Shigella spp./EIEC	NOT DETECTED	investigation and specialist consultation is
Vibrio spp.	NOT DETECTED	recommended
Yersinia enterocolitica	NOT DETECTED	

Patient management plan for gut health

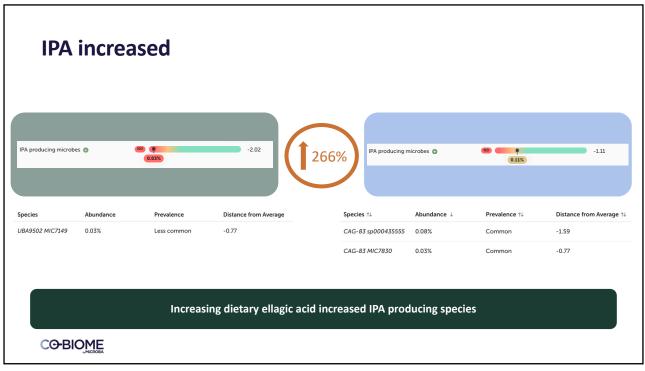
Supplement	Dosage	Duration	Related condition
Resveratrol	Take 200mg with dinner	8 months	TMAO, E.coli
GOS	Take 5g with breakfast	8 months	Pathobionts
Fish oil	Take 1500mg with breakfast and dinner	8 months	Inflammation, heart health
НМО	Take 600mg after breakfast and dinner	8 months	Dysbiosis, leaky gut

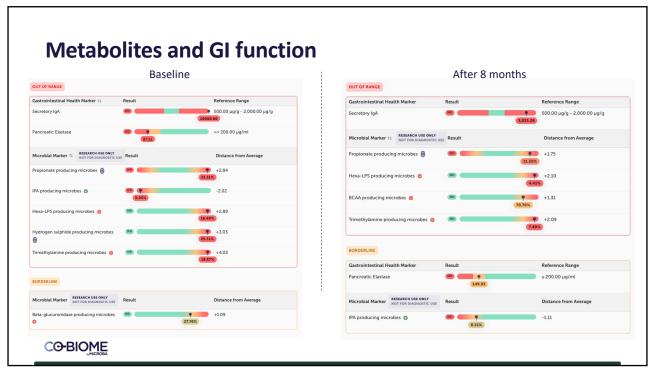

Dietary/Lifestyle	Related condition
Consume a Mediterranean style diet	Pathobionts
Aim to consume 38g of dietary fibre every day	Pathobionts
Consume 1/3 cup of mixed organic berries 5x weekly	Cardiovascular health
Limit red meat and carnitine intake	High TMA
Consume 1 cup of cooked cruciferous veggies each day	High TMAO

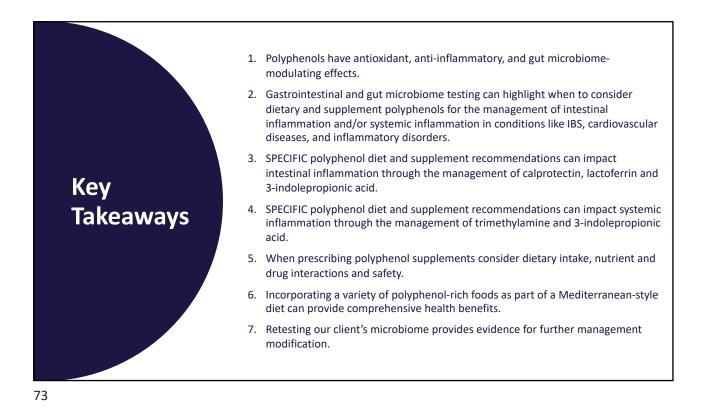
		Base	line			1		After 8	mor	nths	
†4	Phylum 11	Species 11	Abundance :	Prevalence 11 Dis	tance from Average 11	16	Phylum 14	Species 11	Abundance a	Prevalence 11 D	Distance from Average 11
	Proteobacteria	Escherichia coli (flexneri)	16.16%	Less common	+3.92	0	Firmicutes_A	Auminococcus_D bicirculans	7.92%	Common	+1.69
	Firmicutes_A	Blautia_A obeum	5.60%	Common	+2.70	•	Firmicutes_A	Ruminococcus_E bromil_B	6.54%	Common	+0.87
,	Firmicutes_A	Fusicatenibacter saccharivorans	3.66%	Very common	+0.30	0	Firmicutes_A	Agathobacter faecis	6.09%	Common	+1.49
0	Firmicutes_A	Agathobacter rectale	3.27%	Common	+0.58	0	Firmicutes_A	Blautia_A obeum	4.96%	Common	+2.57
0	Firmicutes_A	Ruminococcus_E bromi_B	3.21%	Common	+0.32	۰	Proteobacteria	Escherichia coli (flexneri)	4.41%	Less common	+3.03
•	Bacteroidota	Bacteroides_B vulgatus	2.62%	Common	+0.56	•	Actinobacteriota	Billidobacterium adolescentis	3.11%	Common	+0.72
	Bacteroidota	Alistipes putredinis	2.56%	Common	+0.85	•	Bacteroidota	Bacteroides_A sp000432735	3.04%	Rare	
	Firmicutes_A	Ruminococcus_D bicirculans	1.78%	Common	+0.62	0	Firmicutes_A	Blautia_A wexlerae	2.93%	Very common	+0.44
0	Firmicutes_A	Faecalibacterium prausnitzii_C	1.63%	Common	+0.80	•	Bacteroidota	Bacteroides_B vulgatus	2.88%	Common	+0.63
,	Firmicutes_A	Agathobacter faecis	1.58%	Common	+0.45	θ	Bacteroidota	Bacteroides uniformis	2.72%	Very common	+1.03
	Proteobacteria	CAG-495 sp000436375	1.46%	Less common	+1.05	•	Firmicutes_A	Agathobacter rectale	2.65%	Common	+0.41
	Firmicutes_A	Gemmiger formicilis	1.41%	Common	+0.49	۰	Firmicutes_A	Ruminococcus_C callidus	1.77%	Less common	+0.76
•	Bacteroidota	Parabacteroides distasonis	1.33%	Very common	+2.31	0	Firmicutes_A	Fusicatenibacter saccharivorans	1.71%	Very common	-0.44
	Firmicutes_A	CAG-217 sp000436335	1.32%	Common	+0.37	θ	Bacteroidota	Alistipes putredinis	1.61%	Common	+0.38
	Firmicutes_A	CAG-83 sp000435975	1.28%	Less	+1.55		Firmicutes_A	Gemmiger formicilis	1.56%	Common	+0.57
0	Bacteroidota	Bacteroides uniformis	1.07%	Very	+0.11	0	Firmicutes_A	Blautia_A massiliensis Faecalibacterium	1.25%	Common	+0.81
	Firmicutes_A	Eubacterium_E halli	1.05%	Common	+0.64			prausnitzil_G		common	
	Firmicutes_A	Blautia_A massiliensis	1.02%	Common	+0.63	•	Actinobacteriota	Billobacterium pseudocateriulatum	0.99%	Less common	+0.59
	Bacteroidota	Alistipes shahii	0.88%	Common	+1.47	•	Firmicutes_A	Eubacterium_E hallii	0.94%	Common	+0.50
D	Firmicutes_A	Anaerostipes hadrus	0.81%	Very		0	Firmicutes_A	Faecalibacterium prausnitzii D	0.94%	Very	+0.55

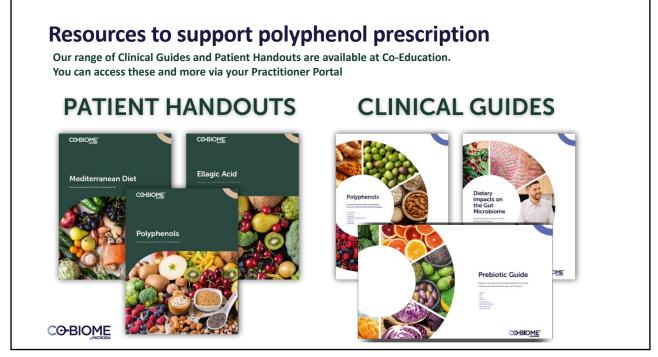

			Baseline					A	fter 8 mo	nths	
ex	a-LPS producing	microbes 😑	ND		+2.89 16.40%		Hexa-LPS prod	ucing microbes 🤤	ND		4.41%
t.	Phylum †↓	Species ↑↓	Abundance ↓	Prevalence ↑↓	Distance from Average ↑↓		Phylum	Species	Abundance	Prevalence	Distance from Avera
•	Proteobacteria	Escherichia coli (flexneri)	16.16%	Less common	+3.92	•	Proteobacteria	Escherichia coli (flexneri)	4.41%	Less common	+3.03
•	Proteobacteria	Escherichia coli	0.10%	Less common	+0.49						
•	Proteobacteria	Escherichia coli (coli_D)	0.09%	Less common	+0.03						172%
•	Proteobacteria	Escherichia coli (dysenteriae)	0.08%	Rare							172%

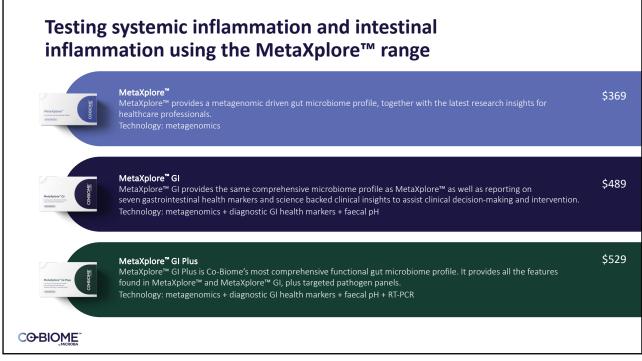
Baselin	e	After 8 mo	nths
Bacterial		Bacterial	
Marker 1↓	Result ↑↓	Marker 13	Result ↑↓
Aeromonas spp.	NOT DETECTED	Aeromonas spp.	NOT DETECTED
Campylobacter spp.	DETECTED	Campylobacter spp.	NOT DETECTED
Clostridium difficile toxin B	NOT DETECTED	Clostridium difficile toxin B	NOT DETECTED
E. coli O157	NOT DETECTED	E. coli O157	NOT DETECTED
Enteroaggregative E. coli (EAEC)	NOT DETECTED	Enteroaggregative E. coli (EAEC)	NOT DETECTED
Enteropathogenic E. coli (EPEC)	NOT DETECTED	Enteropathogenic E. coli (EPEC)	NOT DETECTED
Enterotoxigenic E. coli (ETEC)	NOT DETECTED	Enterotoxigenic E. coli (ETEC)	NOT DETECTED
Hypervirulent Clostridium difficile	NOT DETECTED	Hypervirulent Clostridium difficile	NOT DETECTED
Salmonella spp.	NOT DETECTED	Salmonella spp.	NOT DETECTED
Shiga Toxin	NOT DETECTED	Shiga Toxin	NOT DETECTED
Shigella spp./EIEC	NOT DETECTED	Shigella spp./EIEC	NOT DETECTED
Vibrio spp.	NOT DETECTED	Vibrio spp.	NOT DETECTED
Yersinia enterocolitica	NOT DETECTED	Yersinia enterocolítica	NOT DETECTED
Phylum Species	Abundance Prevalence Distance from		NOT DETECTED

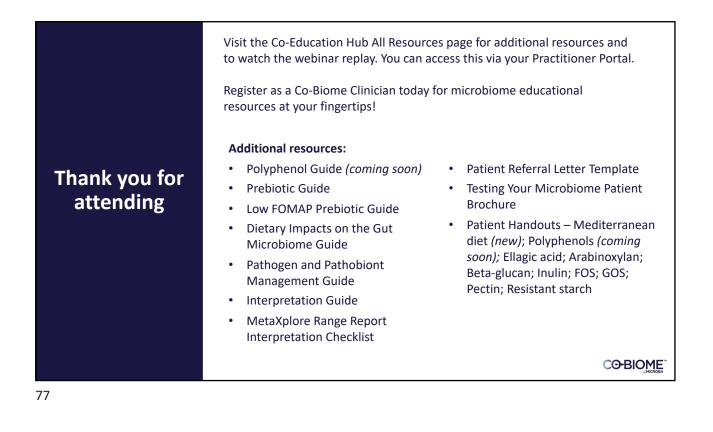


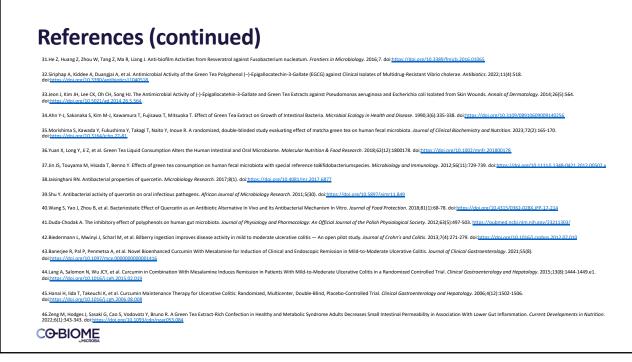

	Baseline						After 8 months					
	Phylum 14	Species ↑↓	Abundance ↓	Prevalence †↓ Dist	ance from Average ᡝ	↑↓	Phylum †↓	Species †↓	Abundance ↓	Prevalence †↓	Distance from Average	
0	Actinobacteriota	Bifidobacterium pseudocatenulatum	0.12%	Less common	-0.78	0	Actinobacteriota	Bifidobacterium adolescentis	3.11%	Common	+0.72	
0	Actinobacteriota	Bifidobacterium animalis	0.08%	Less common	-0.57	0	Actinobacteriota	Bifidobacterium pseudocatenulatum	0.99%	Less common	+0.59	
						•	Actinobacteriota	Bifidobacterium MIC6680	0.53%	Rare		
						0	Actinobacteriota	Bifidobacterium longum	0.09%	Common	-1.10	
						0	Actinobacteriota	Bifidobacterium MIC7686	0.06%	Rare		






Patient management plan for gut health


Supplement	Dosage		Duration	Related condition			
Resveratrol	Take 300mg with lunch and dinne	er	3 months	ТМАО			
GOS	Take 5g with breakfast and dinne	r	3 months	Pathobionts			
Fish oil Take 1500mg with breakfast and dinner			3 months	Inflammation, heart health			
НМО	Take 600mg after breakfast, lunc dinner		3 months	Dysbiosis, leaky gut			
Dietary/Lifestyle		Relat	ed condition	Second Constanting			
Consume a Mediterranean style diet			Pathobionts				
Aim to consume 38g of dietary fibre every day			Pathobionts				
Consume 1/3 cup of mixe	ed organic berries 5x weekly	Cardiovascular health					
Limit red meat and carni	tine intake	High TMA					
Consume 1 cup of cooke	d cruciferous veggies each day	High TMAO					
Consume 1 can of legum	nes each day	Pathol	pionts				



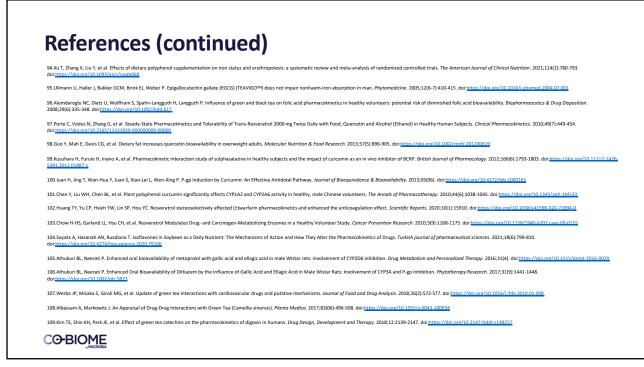
1	LVermerris W, Nicholson R. Phenolic Compound Biochemistry. Springer Netherlands; 2006. doi: https://doi.org/10.1007/978-1-4020-5164-7_
2	2. Doughari J. Phytochemicals: Extraction Methods, Basic Structures and Mode of Action as Potential Chemotherapeutic Agents. In: Phytochemicals - a Global Perspective of Their Role in Nutrition and Health.; 2012. doi:https://doi.org/10.5772/26052
3	3.Gharras H. Polyphenols: food sources, properties and applications - a review. International Journal of Food Science & Technology. 2009;44(12):2512-2518. doi:https://doi.org/10.1111/j.1365-2621.2009.02077.x
	LRothwell JA, Perez-Jimenez J, Neveu V, et al. Phenol-Explorer 3.0: a major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content. Database: The Journal of Biological Databases and Curation. 2013;2013;bat070. doi:https://doi.org/10.1093/database/bat070.
	5.Naghsh N, Musazadeh V, Nikpayam O, et al. Profiling Inflammatory Biomarkers following Curcumin Supplementation: An Umbrella Meta-Analysis of Randomized Clinical Trials. Wu Q, ed. Evidence-Based Complementary and Alternative Medicine. 2023;20 Joi: https://doi.org/10.1155/2023/4875636
e	5 Ferguson JIA, Abbott KA, Garg ML. Anti-Inflammatory effects of oral supplementation with curcumin: a systematic review and meta-analysis of randomized controlled trials. Nutrition Reviews. 2020;79(9):1043-1066. doi:https://doi.org/10.1033/nutritinu
	7. Ghadimi M, Foroughi F, Hashemipour S, et al. Randomized double-blind clinical trial examining the Ellagic acid effects on glycemic status, insulin resistance, antioxidant, and inflammatory factors in patients with type 2 diabetes. Phytotherapy research: PI 2023-1032. doi:https://doi.org/10.1002/01r.6862
	3.Kazemi M, Lalooha F, Nooshabadi MR, Dashti F, Kavianpour M, Haghighian HK. Randomized double blind clinical trial evaluating the Ellagic acid effects on insulin resistance, oxidative stress and sex hormones levels in women with polycystic ovarian syndr ournal of Ovarian Research. 2021;14(1). doi:https://doi.org/10.1186/s13048-021-00849-2
	Arafaf M, Haghighian MK, Molani-Gol R, Hemmati S, Jafarabadi MA. Effects of Pomegranate (Punica granatum L.) Peel Extract Supplementation on Markers of Inflammation and Serum Matrix Metalloproteinase 1 in Women With Knee Osteoarthritis: A Andomized Double-Blind Placebo-Controlled Study. Nutrition and Metabolic Insights. 2024;17. doi: https://doi.org/10.1177/11786389241243266
1	10. Molani-Gol R, Rafraf M. Effects of resveratrol on the anthropometric indices and inflammatory markers: an umbrella meta-analysis. European Journal of Nutrition. 2024;63(4):1023-1040. doi:https://doi.org/10.1007/b00394.024-03335-9
1	11. Haghighatdoost F, Hariri M. The effect of green tea on inflammatory mediators: A systematic review and meta-analysis of randomized clinical trials. Phytotherapy Research. 2019;33(9):2274-2287. doi:https://doi.org/10.1002/otr.6432
1	12. Soura F, Vasconcellos GL, José D, Roberto L, Silva M. Effect of Green Tea Supplementation on Inflammatory Markers among Patients with Metabolic Syndrome and Related Disorders: A Systematic Review and Meta-Analysis. Preventive Nutrition and Foo 2024;29(2):106-117. doi:https://doi.org/10.3746/anf.2024.29.2.106
	13.Kayani Z, Najafi K, Naghsh N, Karvane HB, Musazadeh V. The effects of curcumin supplementation on biomarkers of inflammation, oxidative stress, and endothelial function: A meta-analysis of meta-analyses. Prostaglandins & other lipid mediators. 2024;174:106867-106867. doi:https://doi.org/10.1016/i.urostaelandins.2024.105867.
	14. Dehzad MJ, Ghalandari H, Nouri M, Askarpour M. Antioxidant and anti-inflammatory effects of curcumin/turmeric supplementation in adults: A GRADE-assessed systematic review and dose-response meta-analysis of randomized controlled trials. Cytok 2023;164:156144. doi:https://doi.org/10.1016/j.cyto.2023.156144
1	15.Hosseini SH, Zarghami M, Haghighian HK, Roochi AB, Abediankenari S, Houshmand G. Effects of Ellagic Acid Supplementation on Antioxidant Status and Symptom Improvement in Patients with Major Depressive Disorder: A Double-blind Randomized Clir

References (continued)

16.Mirzaie Z, Bastani A, Haji-Aghamohammadi AA, Nooshabadi M Clinical Trial. *Clinical Nutrition Research*. 2022;11(2):98-98. doi:htt ad B, Haghighian HK. Effects of Ellagic Acid on Oxidative Stress Index, Inflammatory Markers and Quality of Life in Patients With Irritable Bowel Syndrome: Randomized Double-blind 2022.11.2.98 17. Koushki M, Lakzaei M, Khodabandehloo H, Hosseini H, Meshkani R, Panahi G. Therapeutic effect of resveratrol supplementation on oxidative stress: a systematic review and meta-analysis of randomised controlled trials. Postgraduate Medical Journal. 2019;96(1134):197-205. doi:https://doi.org/10.1136/nostradmedi-2019-136415 18. Asbaghi (), Kelishadi MR, Larky DA, et al. The effects of green tea extract supplementation on body composition, obesity-related hormones and oxidative stress markers: a grade-assessed systematic review and dose-response meta-analysis of randomised controlled trials. *The British Journal of Nutrition*. 2024;131(7):1125-1157. doi:https://doi.org/10.1017/S000711457300260X 19.Rasaei N, Asbaghi O, Samadi M, et al. Effect of Green Tea Supplementation on Antioxidant Status in Adults: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Antioxidants. 2021;10(11):1731. doi:https://doi.org/10.3390/antiox10111731 20. Vasmehjani A, Yaghoubi F, Darabi Z, Abdollahi N, Sangsefidi ZS, Hosseinzadeh M. The Effect of Quercetin on Stress Oxidative Markers: A Systematic Review and Meta-Analysis of Randomized Controlled Clinical Trials. Journal of Nutrition and Food Security. Published online October 31, 2021. doi:https://doi.org/10.18502/infs.v7i4.11065 21.Mody D. Athamneh AIM. Seleem MN. Curcumin: A natural derivative with antibacterial activity against Clostridium difficile. Journal of Global Antimicrobial Resistance. 2020;21:154-161. doi:htt 22 Zheng D. Huang C. Huang H. et al. Antibacterial Mechanism of Curcumin: A Beview. Chemistry & Biodiversity. 2020;17(8). doi:https://doi.org/10.1002/cbdy.202000177 23. Gunes H. Gulen D. Mutlu R. Gumus A. Tas T. Topkava AE. Antibacterial effects of curcumin. Toxicoloav and Industrial Health. 2013;32(2):246-250. doi:https://doi.org/10.1177/0748233713498458 24.Jazayeri S. Survival of Bifidobacteria and Other Selected Intestinal Bacteria in TPY Medium Supplemented with Curcumin as assessed in vitro. International Journal of Probiotics and Prebiotics. 2009;4(1):15-22. Accessed June 30, 2024. 25.Hussain Y, Alam W, Ullah H, et al. Antimicrobial Potential of Curcumin: Therapeutic Potential and Challenges to Clinical Applications. Antibiotics. 2022;11(3):322. doi:htt 26 Bialonska D, Kasimsetty SG, Schrader KK, Ferreira D. The Effect of Pomegranate (Punica granatum L.) Byproducts and Ellagitannins on the Growth of Human Gut Bacteria. Journal of Agricultural and Food Chemistry. 2009;57(18):8344-8349. doi:https://doi.org/10.1021/f901931h 27.Sivamani RK, Mincy Chakkalakal, Pan A, et al. Prospective Randomized, Double-Blind, Placebo-Controlled Study of a Standardized Oral Pomegranate Extract on the Gut Microbiome and Short-Chain Fatty Acids. Foods. 2024;13(1):15-15. 28. González-Sarrías A, Romo-Vaquero M, García-Villalba R, Cortés-Martín A, Selma MV, Espín JC. The Endotoxemia Marker Lipopolysaccharide-Binding Protein is Reduced in Overweight-Obese Subjects Consuming Pomegranate Extract by Modulating the Gut Microbiota: A Randomized Clinical Trial. Molecular Nutrition & Food Research. 2018;62(11):1800160. doi:https://doi.org/10.1002/mnfr 201800160. 30. Promgool T, Pancharoen O, Deachathai S. Antibacterial and antioxidative compounds from Cassia alata Linn. Directory of Open Access Journals. 2014;34(4). CO-BIOME

79

References (continued)


47. Dryden GW, Lam A, Beatty K, Qazzaz HH, McClain CJ. A Pilot Study to Evaluate the Safety and Efficacy of an Oral Dose of (-)-Epigallocatechin-3-Gallate-Rich Polyphenon E in Patients With Mild to Moderate Ulcerative Colitis. Inflommatory Bowel Diseases. 2013;19(9):1. doi:https://doi.org/10.1097/mib.0H013e31828/E5198.
48.Langmead L, Feakins RM, Goldthorpe S, et al. Randomized, double-blind, placebo-controlled trial of oral aloe vera gel for active ulcerative colitis. Alimentary Pharmacology & Therapeutics. 2004;19(7):739-747. doi:https://doi.org/10.1111/1.1365-2036.2004.01902
49 Wang Z, Bergeron N, Levison BS, et al. Impact of chronic dietary red meat, white meat, or non-meat protein on trimethylamine N-oxide metabolism and renal excretion in healthy men and women. Europeon Heart Journal. 2019;40(7):583-594. doi:https://doi.org/10.1033/eurhearti/ehv/299
50 Krishnan 5, O'Connor LE, Wang Y, Gertz ER, Campbell WW, Bennett BJ. Adopting a Mediterranean-style eating pattern with low, but not moderate, unprocessed, lean red meat intake reduces fasting serum trimethylamine N-oxide (TMAO) in adults who are overweight or obese. British Journal of Nutrition. 2022;128(9):1-21. doi:https://doi.org/10.1012/c0072114521004604
51.Wilcox J, Skye SM, Graham B, et al. Dietary Choline Supplements, but Not Eggs, Raise Fasting TMAO Levels in Participants with Normal Renal Function: A Randomized Clinical Trial. The American Journal of Medicine. 2021;134(9):1160-1169.e3. doi:https://doi.org/10.1016/i.amimed.2021.03.016
52.Cho CE, Aardema NDJ, Bunnell ML, et al. Effect of Choline Forms and Gut Microbiots Composition on Trimethylamine-N-Oxide Response In Healthy Men. Nutrients. 2020;12(8):2220. doi:https://doi.org/10.3330/nuj12082220
53. Taesuwan S, McDougall MQ, Malysheva OV, et al. Choline metabolome response to prenatal choline supplementation across pregnancy: A randomized controlled trial. The FASEB Journal. 2021;35(12). doi: https://doi.org/10.1096/fi.202101401rr.
54. Cashman JR, Xiong Y, Lin J, et al. In vitro and in vivo inhibition of human flavin-containing monooxygenase form 3 (FMO3) in the presence of dietary indoles. Biochemical pharmacology. 1999;58(6):1047-1055. doi:https://doi.org/10.1016/s006-295209100166-5
55 Annunziata G, Maisto M, Schisano C, et al. Effects of Grape Pomace Polyphenolic Extract (Taurisolo [®]) in Reducing TMAO Serum Levels in Humans: Preliminary Results from a Randomized, Placebo-Controlled, Cross-Over Study. Nutrients. 2019;11(1):139. doi:https://doi.ore/10.3380/nu11010139
56.Annunziata G, Maisto M, Schisano C, et al. Effect of Grape Pomace Polyphenols With or Without Pectin on TMAO Serum Levels Assessed by LC/MS-Based Assay: A Preliminary Clinical Study on Overweight/Obese Subjects. Frontiers in Phormacology. 2019;10.
57 Peron G, Meroño T, Gargari G, et al. A Polyphenol-Rich Diet Increases the Gut Microbiota Metabolite Indole 3-Propionic Acid in Older Adults with Preserved Kidney Function. Molecular Nutrition & Food Research. 2022;66(21):2100349. dol <u>https://doi.org/10.1002/mnfr.202100349</u>
58.Zhu C, Sawrey-Kubicek L, Beals E, et al. Human gut microbiome composition and tryptophan metabolites were changed differently by fast food and Mediterranean diet in 4 days: a pilot study. Nutrition Research. 2020;77:52-72. doi:https://doi.ore/10.1016/i.nutres.2020.03.005
59.Lécuyer L, Dalle C, Micheau P, et al. Untargeted plasma metabolomic profiles associated with overall diet in women from the SU.VI.MAX cohort. European Journal of Nutrition. 2020;59(8):3425-3439. doi:https://doi.org/10.1007/s00394-020-02177-5
60. Yang J, Guo Y, Lee RP, et al. Pomegranate Metabolites Impact Tryptophan Metabolism in Humans and Mice. Current Developments in Nutrition. 2020;4(11):nzaa165-nzaa165.doi:https://doi.org/10.1033/doi.nzaa165
61.Pounis G, Di Castelnuovo A, Bonaccio M, et al. Flavonoid and lignan intake in a Mediterranean population: proposal for a holistic approach in polyphenol dietary analysis, the Moli-sani Study. European Journal of Clinical Nutrition. 2015;70(3):338-345. doi:https://doi.org/10.1038/eim.2015.178
CO-BIOME

81

References (continued)

62.Dryer-Beers ER, Griffin J, Matthews PM, Frost GS. Higher dietary polyphenol intake is associated with lower blood inflammatory markers. Journal of Nutrition. Published online May 1, 2024. doi:https://doi.org/10.1016/itimut.2024.05.005.
63 Pounis G, Bonaccio M, Castelnuovo AD, et al. Polyphenol Intake is associated with low-grade inflammation, using a novel data analysis from the Moli-sani study. Thrombosis and Hoemostasis. 2016;115(02):344-352. doi:https://doi.org/10.1160/th15-06-0487.
64. Harms LM, Scalbert A, Zamora-Ros R, et al. Plasma polyphenols associated with lower high-sensitivity C-reactive protein concentrations: a cross-sectional study within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. British Journal of Nutrition. 2020;123(2):198-208. doi:https://doi.org/10.1017/s00071145190007538
65. Chun OK, Chung SJ, Claycombe KJ, Song WO. Serum C-Reactive Protein Concentrations Are Inversely Associated with Dietary Flavonoid Intake in U.S. Adults. The Journal of Nutrition. 2008;138(4):753-760. doi:https://doi.org/10.1003/in/138.4.753.
66.Dunneram Y, Chung HF, Cade JE, et al. Soy intake and vasomotor menopausal symptoms among midlife women: a pooled analysis of five studies from the InterLACE consortium. European Journal of Clinical Nutrition. 2019;73(11):1501-1511. doi:https://doi.org/10.1038/s41130-019-0398-9
67. Nagata C. Soy Product Intake and Hot Flashes in Japanese Women: Results from a Community-based Prospective Study. American Journal of Epidemiology. 2001;153(8):790-793. doi:https://doi.org/10.1093/nie/153.8.750
68.0h MR, Park JH, Park SK, Park SH. Efficacy of plant-derived dietary supplements in improving overall menopausal symptoms in women: An updated systematic review and meta-analysis. Phytotheropy Research. 2024;38(3). doi:https://doi.org/10.1002/ntr.8112.
69.Taku K, Melby MK, Kronenberg F, Kurzer MS, Messina M. Extracted or synthesized soybean isoflavones reduce menopausal hot flash frequency and severity. Menopouse. 2012;19(7):776-780. doi:https://doi.org/10.1007/ama-0h013a3182410159.
70.Xu R, Yang K, Li S, Dai M, Chen G. Effect of green tea consumption on blood lipids: a systematic review and meta-analysis of randomized controlled trials. Nutrition Journal. 2020;19(1). doi:https://doi.org/10.1186/s12937-020-00557-5
71 Xu R, Bai Y, Yang K, Chen G. Effects of green tea consumption on glycemic control: a systematic review and meta-analysis of randomized controlled trials. Nutrition & Metabolism. 2020;17(1). doi:https://doi.org/10.1185/s12886-070-00459-5
72. Bahari H, Rafiei H, Goudarzi K, et al. The effects of pomegranate consumption on inflammatory and oxidative stress biomarkers in adults: a systematic review and meta-analysis. Inflammopharmacology. 2023;31(5). doi:https://doi.org/10.1007/s10787-022-01294-x
73.Bahari H, Rezalian F, Goudarzi K, et al. The effects of pomegranate consumption on lipid profile in adults: A systematic review and meta-analysis. Journal of Functional Foods. 2023;108:105727. doi:https://doi.org/10.1016/i.iff.2023.105722
74.Hossein Bahari, Kosar Omidian, Goudarzi K, et al. The effects of pomegranate consumption on blood pressure in adults: A systematic review and meta-analysis. Phytotherapy Research. 2024;38(5). doi:https://doi.org/10.1002/ntr.8170.
75.Batista-Jorge GC, Barcala-Jorge AS, Lelis DF, et al. Resveratrol Effects on Metabolic Syndrome Features: A Systematic Review and Meta-Analysis. Endocrines. 2024;5(2):225-243. doi:https://doi.org/10.3300/endocrines5020016
76.Cao X, Liao W, Xia H, Wang S, Sun G. The Effect of Resveratrol on Blood Lipid Profile: A Dose-Response Meta-Analysis of Randomized Controlled Trials. Nutrients. 2022;14(18):3755. doi:https://doi.org/10.3330/hu/14183755.
77. Wang X, Zhou X, Zhang X. Effects of Ellagic Acid on Glucose and Lipid Metabolism: A Systematic Review and Meta-Analysis. Journal of Nutrition and Metabolism: 2024;2024(1). doi:https://doi.org/10.1155/2024/5558665
78.Lopresti AL, Smith SJ, Rea A, Michel S. Efficacy of a curcumin extract (Curcugen ⁷⁰) on gastrointestinal symptoms and intestinal microbiota in adults with self-reported digestive complaints: a randomised, double-blind, placebo-controlled study. BMC Complementary Medicine and Therapies. 2021;21(1). doi: <u>https://doi.org/10.1186/s12906-021-03220-6</u>

).Hong SW, Chun J, Park S, Lee HJ, Im JP, Kim JS. Aloe vera Is Effective and Safe in Short-term Treatment of Irritable Bowel Syndrome: A Systematic Review and Meta-analysis. Journal of Neurogastroenterology and Motility. 2018;24(4):528-535.
	1.Ahluwalia B, Magnusson MK, Böhn L, et al. Aloe barbadensis Mill. extract improves symptoms in IBS patients with diarrhoea: post hoc analysis of two randomized double-blind controlled studies. Therapeutic Advances in Gostroenterology. 21:14:1756:28482110481. doi:https://doi.org/10.1177/1756/248211048133.
	LBogdanski P, Suliburska J, Szulinska M, Stepien M, Pupek-Musialik D, Jablecka A. Green tea extract reduces blood pressure, inflammatory biomarkers, and oxidative stress and improves parameters associated with insulin resistance in obese, hypertensiv tients. Nutrition Research. 2012;32(6):421-427. doi:https://doi.org/10.1016/imutres.2012.05.002
82	2. Maron DJ, Lu GP, Cai NS, et al. Cholesterol-Lowering Effect of a Theaflavin-Enriched Green Tea Extract. Archives of Internal Medicine. 2003;163(12):1448. doi:https://doi.org/10.1001/archinte.163.12.1448.
83	Nantz MP, Rowe CA, Bukowski JF, Percival SS. Standardized capsule of Camellia sinensis lowers cardiovascular risk factors in a randomized, double-blind, placebo-controlled study. Nutrition. 2009;25(2):147-154. doi:https://doi.org/10.1016/j.nut.2009.07
84	Zamani M, Kelishadi MR, Ashtary-Larky D, et al. The effects of green tea supplementation on cardiovascular risk factors: A systematic review and meta-analysis. Frontiers in Nutrition. 2023;9. doi: https://doi.org/10.3389/fnut.2022.1084455
	Barnard ND, Kahleova H, Holtz DN, et al. The Women's Study for the Alleviation of Vasomotor Symptoms (WAVS): a randomized, controlled trial of a plant-based diet and whole soybeans for postmenopausal women. Menopouse. 2021;28(10).
86	Sclifford MN. Diet-Derived Phenols in Plasma and Tissues and their Implications for Health. Planta Medica. 2004;70(12):1103-1114. doi:https://doi.org/10.1055/e-2004.435835.
	? Manach C, Williamson G, Morand C, Scalbert A, Rémésy C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. The American Journal of Clinical Nutrition. 2005;81(1):23052425.
	Lokoja J. Yang B, Linderborg KM. Acylated anthocyanins: A review on their bioavailability and effects on postprandial carbohydrate metabolism and inflammation. Comprehensive Reviews in Food Science and Food Safety. 2021;20(6).
89 He	A Gibson GR, Hutkins R, Sanders ME, et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology & partology. 2017;14(8). doi:https://doi.org/10.1038/nreastro.2017.75
90	Bertelli A, Biagi M, Corsini M, Baini G, Cappellucci G, Miraldi E. Polyphenols: From Theory to Practice. Foods. 2021;10(11):2595. doi: https://doi.org/10.3390/foods10112595
91	.Khaodhiar L, Ricciotti HA, Li L, et al. Daidzein-rich isoflavone aglycones are potentially effective in reducing hot flashes in menopausal women. Menopouse . 2008;15(1):125-132. Accessed July 30, 2024. https://pubmed.ncbi.nlm.nih.gov/18257146
	Crawford SL, Jackson EA, Churchill L, Lampe JW, Laung K, Ockene JK. Impact of dose, frequency of administration, and equal production on efficacy of isoflavones for menopausal hot flashes. Menopouse. 2013;20(9):911-921.
93	LHazim S, Curtis PJ, Schär MY, et al. Acute benefits of the microbial-derived isoflavone metabolite equol on arterial stiffness in men prospectively recruited according to equol producer phenotype: a double-blind randomized controlled trial. The America urral of Clinical Nutrition. 2016;103(3):698-702. doi:https://doi.org/10.3945/aicn.115.125500

References (continued)

inetics of Oral Cyclosporine. American Journal of Health-System Pharmacy. 2004;61(22):2406-2409. doi:https://doi.org 110.Choi JS, Choi BC, Choi KE. Effect of Quercetin on The Pharmaco 111.Wu LX, Guo CX, Chen WQ, et al. Inhibition of the organic anion-transporting polypeptide 1B1 by quercetin: an in vitro and in vivo assessment. British Journal of Clinical Pharmacology. 2012;73(5):750-757. doi: https://doi.org/10.1111/j.1365-2125.2011.04150.x 112.Kim KA, Park PW, Kim HK, Ha JM, Park JY. Effect of Quercetin on the Pharmacokinetics of Rosiglitazone, a CYP2C8 Substrate, in Healthy Subjects. The Journal of Clinical Pharmacology. 2005;45(8):941-946. doi:https://doi.org/10.1177/0091270005278407 113.Wang S-Y, Duan K-M, Li Y, et al. Effect of quercetin on P-glycoprotein transport ability in Chinese healthy subjects. European journal of clinical nutrition. 2013;67(4):390-394. doi:https://doi.org/10.1038/eicn.2013.5 114.Duan KM, Wang SY, Ouyang W, Mao YM, Yang LJ. Effect of Quercetin on CYP3A Activity in Chinese Healthy Participants. The Journal of Clinical Pharmacology. 2012;52(6):940-946. doi:https://doi.org/10.1177/0091270011406278 115.Ravindra Babu Pinglii, A. Krishnamanjari Pawar, Challa SR. Systemic exposure of Paracetamol (acetaminophen) was enhanced by quercetin and chrysin co-administration in Wistar rats and *in vitro* model: risk of liver toxicity. Drug development and industrial phormacy. 2015;41(11):1793-1800. doi:https://doi.org/10.3109/06330045.2015.1008012 116.EFSA. Safety of synthetic trans-resveratrol as a novel food pursuant to Regulation (EC) No 258/97. EFSA Journal. Published online January 12, 2016. doi: https://doi.org10.2903/i efsa.2016.4368. 117.Edwards JA, Beck M, Riegger C, Bausch J. Safety of resveratrol with examples for high purity, trans-resveratrol, resVida. Annals of the New York Academy of Sciences. 2011;1215(1):131-137. doi:https://doi.org/10.1111/j.1749-6632.2010.05855.x 118.Hidago-Lozada GM, Villaruel-López A, Vázquez-Paulino O, González-Ortiz M, Pérez-Rubio KG. Ellagic Acid Effect on the Components of Metabolic Syndrome, Insulin Sensitivity and Insulin Secretion: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Journal of clinical medicine. 2022;11(19):5741-5741. doi:https://doi.org/10.3200/icm11195741. 119. TGA. Proposed Changes to Requirements for Listed Medicine Ingredients: Annual Low-Negligible Risk Changes 2023-2024 Final Decisions.; 2023. Accessed June 30, 2024. https://doi.org/10.1016/j.com/10.1016/j.com/2023-2024--final-decisions-document.pdf on/low-nee-risk-2023-120.Younes M, Aggett P, Aguilar F, et al. Safety of hydroxyanthracene derivatives for use in food. EFSA Journal. 2018;16(1). doi:https://doi.org/10.2903/i efsa.2018.5090 121.Hu J, Webster D, Cao J, Shao A. The safety of green tea and green tea extract consumption in adults – Results of a systematic review. Regulatory Toxicology and Pharmacology. 2018;95:412-433. doi:https://doi.org/10.1016/j.vrtoh.2018.03.019 122.Dekant W, Fujii K, Shibata E, Morita O, Shimotoyodome A. Safety assessment of green tea based beverages and dried green tea extracts as nutritional supplements. Toxicology Letters. 2017;277:104-108. doi:https://doi 123 Albek DL, Van Loan MD, Koehler KJ, et al. The Soy Isoflavones for Reducing Bone Loss (SIRBL) Study: a 3-y randomized controlled trial in postmenopausal women. The American Journal of Clinical Nutrition. 2010;91(1):218-230.

124.Messina M, Mejia SB, Cassidy A, et al. Neither soyfoods nor isoflavones warrant classification as endocrine disruptors: a technical review of the observational and clinical data. Critical Reviews in Food Science and Nutrition. 2022;62(21):5824-5885. doi:https://doi.org/10.1080/1040838.2021.185054.

CO-BIOME